

Status of MEGAlib’s Real-Time Analysis Tool Realta
Andreas Zoglauer, Michelle Galloway, Mark Amman, and Steven E. Boggs

Abstract – Realta is the real-time analyzer of MEGAlib, a
software tool to simulate and analyze the data from soft-to-
medium-energy gamma-ray detectors in space and on the
ground. Realta encompasses the complete data analysis path
which ranges from coincidence determination, Compton scatter
and pair creation event reconstruction, event selection, image
reconstruction to spectral identification. Realta is highly multi-
threaded to fully utilize today’s multi-core CPUs and to enable
real-time processing. Taking advantage of the versatility of
MEGAlib, Realta can be applied to a wide variety of gamma-ray
detectors (pixel detectors, strip detectors) and measurement
scenarios (near field 2D and 3D, far field). Realta and MEGAlib
are open source, freely available, written in C++, and based on
ROOT.

I. INTRODUCTION

OR astrophysics as well as for terrestrial applications the
fully automated real-time analysis of gamma-ray data is of

great importance. In astrophysics the real-time localization of
transient events such as gamma-ray bursts and their
differentiation from similar events such as terrestrial gamma-
ray flashes or solar flares is important for initiating immediate
follow-up observations in other wave bands. On the ground,
homeland security applications require the real-time detection,
identification, and localization of nuclear incidents and
threats. However, the indirect nature of imaging gamma rays
in the energy band from a few tens of keV to a few MeV – the
energy band where usually coded masks and Compton
telescopes are used – requires sophisticated and thus time
consuming event and image reconstruction approaches.

MEGAlib [1] – the medium-energy gamma-ray astronomy
library – is a software tool kit which contains all software
tools for the simulation and analysis of gamma-ray detectors
operating from the X-ray to the pair production regime. A first
single-threaded version of a MEGAlib-based real-time
analysis tool was originally developed for the 2001 calibration
campaign of the MEGA Compton and pair telescope [2]. In
the context of this work it has been redesigned to be
applicable to a wide range of detector systems and enhanced
for high-throughput analysis by utilizing multi-threading.

Manuscript received November 15, 2011. This work was supported in part

by the U.S. Department of Homeland Security, Domestic Nuclear Detection
Office, under Interagency Agreement HSHQDC-08-X-00832 and by the U.S.
Department of Energy, Office of Science, under Contract DE-AC02-
05CH11231.

A. Zoglauer is with the Space Sciences Laboratory, University of
California at Berkeley, CA 94720, USA (telephone: +1-510-643-7735, e-mail:
zog@ssl.berkeley.edu).

M. Galloway and S. E. Boggs are with the Space Sciences Laboratory,
University of California at Berkeley, CA 94720, USA.

M. Amman is with the Lawrence Berkeley National Laboratory, Berkeley,
CA 94720, USA.

Since Realta is based on and part of MEGAlib, it is open
source, freely available from the MEGAlib website
(http://www.mpe.mpg.de/MEGA/megalib.html) through cvs,
and based on ROOT [3].

II. DATA FLOW AND DATA MANAGEMENT

The data of an imaging gamma-ray detector needs to pass
through several analysis steps, which are all reproduced
within Realta, each in its own analysis thread:
 Data acquisition – here via a TCP/IP connection from

the hardware or from a program reading simulated data
 Coincidence determination within a given time window

for detector systems without the appropriate hardware
 Spectral identification of isotopes by looking at

detected nuclear lines
 Event reconstruction of Compton, pair-creation, and

charged particle events
 List-mode image reconstruction in near or far field
 Display of the final results
In a multi-threaded environment the event data has to pass

through all these analysis steps in a way that allows
concurrent access without blocking other threads. The
following scheme has been devised to achieve this goal.

All the data of an event is stored in a single class called
MRealTimeEvent (see Fig. 1). This class contains slots
(pointers) to other objects presenting different analysis stages
of the event. In addition, Boolean flags indicate that the event
has passed a certain analysis stage or a special circumstance
occurred such as the event has been dropped due to high CPU
load or it is in coincidence with another event. Each analysis

F

MRealTimeEvent

Slot 1 – after reading the event:
Initial event of type MRawEvent

Slot 2 – after coincidence search:
Coincident event of type MRawEvent

Slot 3 – after event reconstruction:
Reconstructed event (e.g. MComptonEvent)

Slot 4 – after imaging response slice calculation:
Response slice (e.g. MBPSparseImage)

Is Dropped Is Coincident

Fig. 1. Simplified layout of the class MRealTimeEvent

thread only adds newly generated information to the event
into the slot associated with the analysis thread. For example,
the image reconstruction thread adds a new response slice and
sets a flags indicating that this event has been processed by
this analysis step. The next thread waits until this flag is set
before it reads and processes the data of this event.

In addition, all events are stored in a double-linked list,
which must allow for concurrent adding events in the front,
sorting events for ordering them via time, deleting the events
after they are no longer needed at the back of the list, and
parallel accessing the events. Since the double-linked list in
the standard library (std::list) is thread safe it fulfills all
requirements. The individual analysis threads all contain an
iterator of that list which points to the next event which should
be analyzed, or to the first event which shall be used for
histogramming or spectral analysis.

This setup achieves efficient, multi-threaded data handling
since no mutex is required to guard the data itself, only the
final data products such as the spectrum, image, and the
detected isotope list.

III. THE ANALYSIS PIPELINE

The individual modules of the analysis pipeline all utilize
existing MEGAlib classes. These classes only required slight
modification both to their application programming interface
and to ensure reentrance for multi-threaded access from within
Realta.

Internally the analysis is managed by the class
MRealTimeAnalysis. This class takes care of starting and
stopping the threads, managing all user options for event,
spectral, and image reconstruction, and of safely passing the
final data products to the GUI.

All Realta analysis steps require a geometry and detector
description. Within MEGAlib the Geomega [4] library
provides a universal detector library which can represent a
wide variety of different setups. A simple ASCII file contains
the detector description for volumes, materials, detectors, and
triggers. The file is keyword based and reflects the object-
oriented structure of Geomega. For example, a volume
consists of the following parameters: shape, material, position,
rotation, mother volume, and visualization attributes.
Geomega can also handle advanced features such as constants,
math functions, for-loops, if conditions, matrices, etc. to
simplify constructing a geometry. Several widely used
detector types such as strip detectors with and without depth
resolution and voxel detectors are built into Geomega, along
with a sophisticated detector effects engine which enables
realistic energy, position, time resolutions, noise and trigger
thresholds, ADC overflows, etc. which are required for
simulations.

Fig. 2 shows the geometry which was used for the
simulations and reconstructions. The detection system consists
of two half-spherical detector modules, which are built of 1-
cm3 sized CZT elements. The two modules are mounted on a
helicopter platform for long-range standoff detection. This

detector system is an envisioned advanced version of HEMI,
the high-efficiency multi-mode imager [5].

A. Data input

In order to decouple data acquisition and data analysis, and
to enable remote analysis, Realta receives its input data via a
TCP/IP interface. The user only has to specify a host (or an IP
address) and a port. The data is transferred in a simple ASCII
format containing position, energy, and time of the event.
Since data calibration is usually very specific to a given
detector system and Realta aims to be a universal analysis
tool, the transferred data has to be calibrated. This first
analysis step also makes sure that the events are ordered by
time, and identifies and ignores potentially corrupted data sets.

Internally this step creates an MRealTimeEvent object and
fills its first data slot with an object MRawEvent containing
the event time as well as energy and position of all associated
hits. This object is then added to the front of the event list.
The MRawEvent class can be processed by the following
event reconstruction steps.

B. Coincidence Determination

Coincidence detection is one of the simplest tasks in Realta
and is included because not all detection systems provide it in
hardware. In this analysis step, all events which occur within
the coincidence time interval (e.g. 2 s for HEMI) are
combined into one event. This step can be deactivated in the
GUI if desired.

Internally this step uses the coincidence engine of
MEGAlib’s Revan library. It takes the MRawEvent from the
first step and creates a new MRawEvent object, which
contains all hits of all coincident events. It is added to the

Fig. 2. Detector models: The top section shows a helicopter model
with the two 1500-element half-spherical HEMI instruments
mounted, and the bottom section shows the arrangement of the CZT
elements (passive surrounding material is not shown) in a backplane
and a half-spherical structure.

second slot in the first coincident (or only) MRealTimeEvent
object. All following coincident events are flagged as
“coincident” and therefore excluded from any further analysis.

C. Spectral identification

Nuclear threat detection applications require the
instantaneous identification of radioactive elements. Realta
uses MEGAlib’s Spectralyzer [6] library to accomplish this.

The starting point is the events after coincidence
determination. All events within a user defined time window
from the front of the event list are combined into a spectrum
and handed to the spectral analyzer.

The first step of the spectral analysis is peak identification.
Utilizing ROOT’s TSpectrum class, the input spectrum is
smoothed, the background is subtracted, and the peaks are
determined with their mean peak energy, their source and their
background count rate.

In a second step, those peaks are validated based on their
width relative to the detector energy resolution (e.g., for
HEMI it must not be smaller than 0.8, but not larger than 1.8
to still detect multiples), their total counts (e.g., at least 20
required), and the significance of the peak above background
(e.g., 5).

In a third step, the peak positions are used to look up
matching isotopes in a user-defined table using 1 sigma of the
estimated line energy as acceptance window.

Since each peak may have multiple isotope candidates, a
down selection to one final isotope per peak is performed
based on the number of found lines per isotope and their
expected relative intensity.

The output of the spectral analyzer is a list of found
isotopes, which is used by the display thread to mark the
found lines in the spectrum.

D. Event Reconstruction

This step searches for charged particle, pair creation, and
Compton event signatures by utilizing the energies and
positions of the hits along with the kinematics of the events as
well as the geometry via absorption probabilities along the
potential paths of the particles. The final results are the
parameters of the found event type such as the energy of the
recoil electron and the scattered gamma-ray along with first
and second interaction position for Compton events. For
details about event reconstruction within MEGAlib see [7].

This step also uses MEGAlib’s Revan library, which
besides others provides a wide variety of different
reconstructions options for Compton scatter events such as
different variants of the classic Compton sequence
reconstruction and Bayesian event reconstruction, Compton
electron tracking options as well as pair creation and charged
particle reconstruction options. All of the options are
accessible via the Settings menu.

After the event reconstruction is performed, the third slot in
MRealTimeEvent is filled with a new classification of the
event derived from the base class MPhysicalEvent, describing
the event as single-site (MPhotoEvent), Compton scatter

(MComptonEvent), pair creation (MPairEvent), muon
(MMuonEvent), or unidentifiable event (MUnknownEvent).
These classes can determine all high level parameters of the
underlying events, such as Compton scatter angle or pair
opening angle. This object type can then be used by the high-
level data analysis steps described in the following section.

Event reconstruction, especially if it is utilizing absorption
probabilities, can be very time consuming, and can limit the
overall throughput. Therefore measures have to be taken to
prevent this analysis step from falling behind and queueing up
too many unanalyzed events. To accomplish this, the CPU
core load is continually monitored by looking at the wait time
for new events. If the load is at maximum, a self-determined
fraction of the events is randomly not reconstructed and thus
flagged as “dropped”. The fraction of the dropped events is
dynamically adjusted to achieve a maximum load of around
90% of the used CPU core.

E. Image reconstruction

The reconstructed events can now be imaged. Realta uses
MEGAlib’s imaging library Mimrec [8] for this task and
allows full access to all options available in Mimrec via the
Settings menu. This includes performing event selections on
all performance-relevant parameters of single-site, Compton,
and pair events (e.g. energies, interaction distances, scatter or
opening angles, etc.) as well as list-mode likelihood image
reconstruction in spherical, Galactic, and Cartesian
coordinates (2D, 3D) including different response calculation
approaches.

Internally this is a two thread process. The first thread only
calculates the response slices (the back projections, e.g., the
event cones for Compton events) for each event and adds
them to the last slot in the MRealTimeEvent object. Since this
step can also be quite CPU intensive, a similar approach as for
the event reconstruction thread is used. Events are dropped as
necessary to prevent the CPU core utilization from reaching
100%.

A second thread then uses an (ordered-subset) maximum-
likelihood expectation-maximization approach to deconvolve
the events into the final image. The output is an image, a
TH2D histogram, which is brought to the screen by the
display thread.

F. Display

The final task is to display the data. Figure 3 shows an
example using the HEMI geometry from Fig. 1. In the
simulation, the HEMI helicopter is situated 25 m above
ground. The source photons originate from 137Cs, 22Na, and
60Co sources. They build the word HEMI in a 9x7 dot matrix
of point sources per letter. For the analysis only good
Compton events with an interaction distance of at least 10 cm
in the detector have been preselected to be sent to Realta.

The main GUI consists of three main sections. The section
on the left shows the connection status, the number of
received events as a histogram, and a table giving the CPU-
core load of the individual threads along with the ID of the

latest analyzed event. The top right histogram shows the
spectrum from the last 250 seconds (user set) along with all
identified lines. The bottom right slot shows the reconstructed
image, where the letters HEMI are clearly visible, albeit
slightly distorted due to the projection of the letter from a
distant Cartesian plane onto far-field spherical coordinates.
The full set of MEGAlib’s event reconstruction, image
reconstruction, and event selection options is accessible via
the “Settings” menu. However, all changes require a reset of
the real-time analysis - with the exception of the time range
over which the spectrum and image are generated. The
“Tasks” menu allows starting, stopping, and resetting the
analysis.

IV. PERFORMANCE CONSIDERATIONS

The performance of Realta depends on many parameters
such as detector setup, event complexity, energy, selected
reconstruction options, and operating system. Therefore a
prediction of the throughput for a given instrument is not
possible.

Realta can be compiled on Linux, Mac, and Windows.
However it has only been fully optimized for Linux. As a
consequence, its performance on Windows 7 is roughly a
factor two worse than on Ubuntu 10.4 for the above HEMI
setup.

In addition, the performance depends on the complexity of
the average event and thus on the overall detector setup. A
simple calorimeter, which only measures energies, has a much
higher throughput than a Compton camera, which requires
resource intensive Compton sequence reconstruction and
image reconstruction. If the Compton telescope is also capable
of tracking the electrons, then the complexity of the event

reconstruction step is an additional factor of 2-3 times higher.
A similar argument holds for the chosen energy range. At
lower energies, the number of (Compton) interactions and
thus the number of triggered channels is lower, and therefore
the event reconstruction is much easier since the Compton
sequence reconstruction scales with N! where N is the number
of interactions.

Finally, the selected reconstruction options have a strong
influence on the reconstruction throughput. For example,
using an event or image reconstruction approach which
requires the calculation of absorption probabilities is very
CPU intensive. In addition, the imaging speed critically
depends on the number of selected image bins.

As seen in Fig. 3, using the given HEMI geometry and only
Compton events, a maximum throughput of roughly ~3800
Compton events per second can be achieved per core. The
limiting analysis step is in this case the event reconstruction
(“Recon”). However, an event reconstruction approach was
used which takes into account absorption probabilities. Using
a more simple approach would further increase the
throughput. Although in Fig. 2 the histogramming thread is
running at almost 90%, it is not the limiting factor, because it
was just set to generate and update the histograms as fast as
possible.

V. FUTURE DEVELOPMENTS

While Realta has been successfully used for HEMI
measurements and simulations, it is still under development.
Some of the envisioned features for the next version include:
 Automatically splitting the event reconstruction and

image reconstruction tasks into multiple threads in order
to increase the throughput for these two of the most time-
consuming analysis tasks

 Improving the user interface to also show only an image
of the detected lines and only a spectrum of the detected
peaks in the image

 Enabling more sophisticated techniques to drop events in
the case of high CPU-core load, such as eliminating
events by their complexity (number of hits) instead of
simply randomly

 Adding an additional binary data format to the TCP/IP
receiver to reduce the required network bandwidth
compared to the current ASCII format

Nonetheless, already in its present state Realta is a highly
versatile tool for real-time gamma-ray detector analysis, which
can be applied to a wide variety of detection systems.

REFERENCES
[1] A. Zoglauer, R. Andritschke, F. Schopper, "MEGAlib – the Medium

Energy Gamma-ray Astronomy Library", New Astronomy Reviews, vol.
50, no. 7-8, pp. 629-632, 2006

[2] G. Kanbach et al., "Development and calibration of the tracking
Compton/Pair telescope MEGA”, NIM A, vol. 541, pp. 310-322, 2005

[3] R. Brun, F. Rademakers, "ROOT – An Object Oriented Data Analysis
Framework", NIM A, vol. 389, pp. 81-86, 1997

Fig. 3. The main Realta user interface with the three main histograms: The
rate of triggered events, the detected spectrum, and the reconstructed image.
In addition, a table giving the utilization of the individual threads can be
seen. The full set of MEGAlib’s event reconstruction, image reconstruction,
and event selection options is accessible via the Settings menu, while the
Tasks menu allows starting, stopping, and resetting the analysis.

[4] A. Zoglauer, G. Weidenspointner, S.E. Boggs, M. Galloway, C.B.
Wunderer, "Cosima – the Cosmic Simulator of MEGAlib", Nuclear
Science Symposium Conference Record, 2009 IEEE

[5] M. Galloway et al., “Status of the High Efficiency Multimode imager”,
Nuclear Science Symposium Conference Record, 2011 IEEE

[6] M. Galloway, A. Zoglauer, M. Amman, S.E. Boggs, P.N. Luke,
“Spectral analysis for the High Efficiency Multimode Imager”, Nuclear
Science Symposium Conference Record, 2010 IEEE

[7] A. Zoglauer, "First Light for the next Generation of Compton and Pair
telescopes", Doctoral thesis, TU Munich, 2005

[8] A. Zoglauer, M. Galloway, M. Amman, S.E. Boggs, P.N. Luke, “Design,
Implementation, and Optimization of MEGAlib’s image reconstruction
tool Mimrec”, NIM A, vol. 626, pp. 568-571, 2011

